
In this lesson we will learn how to use CSS Grid Layout to create the layout for a web page.
CSS Grid Layout allows us to divide a page into sections and decide how they should be
displayed in terms of size and position in relationship to each other.

One of the main strengths of CSS Grid Layout is that the order that these sections appear in
our HTML is not important. We can move them around in relation to each other however we
see fit. This means that it is relatively straightforward to create completely different layouts
for desktop and mobile, if necessary.

We are going to use the following start code for this lesson (feel free to copy it out from the
pdf file, and make sure to create a new file for this example! You can do so in a different
folder to not clash with previous examples)

CSS Grid Layout
Introduction

it containts:

A header

A div with the id menu

A section with the id main-content

A footer

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <link rel="stylesheet" href="style.css">
 <title>CSS Grid</title>
</head>
<body>
 <div id="grid-container">
 <header>
 <h1>CSS Grid</h1>
 </header>
 <div id="menu">
 <nav>
 Home
 About
 Contact
 </nav>
 </div>
 <section id="main-content">
 <h1>Main Content</h1>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
 aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis
 aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
 occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.</p>
 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
 aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
 Duis
 aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
 occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
 aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
 Duis
 aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint
 occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.</p>
 </section>
 <footer>© 2024 BrightNetwork</footer>
 </div>
</body>
</html>

As you may have guessed based on the name, CSS Grid Layout works by dividing the
sections of our page up into a grid.

Our web page will have 2 columns and 3 rows. Each section will occupy a single row. The
header and footer will occupy both columns, while the navigation menu and main

content section will occupy one column each.

As with Flexbox, CSS Grid Layout provides us with a set of properties that can be applied to
both the parent container element and the child elements within. In order to use CSS Grid
Layout, we must mark the parent container as a grid container and we must mark each
of the child elements as grid-element s and specify a variable name to refer to them by
in our grid template.

The first thing that we will do is mark set the display property of our grid-

container to grid .

/* style.css */

#grid-container {
 display: grid; /* NEW */
}

Next we will need to mark the header , #menu , #main-content and footer as
grid-area s. We will also need to provide a name that we will refer to each of these

elements by within our grid template. These names could be absolutely anything that we
want, but we should use sensible names that accurately describe the areas of our template.

Our Layout

Creating a Layout

header {
 /* ... */
 grid-area: header; /* NEW */
}

#menu {
 /* ... */
 grid-area: menu; /* NEW */
}

#main-content {
 /* ... */
 grid-area: main; /* NEW */
}

footer {
 /* ... */
 grid-area: footer; /* NEW */
}

Now that we have specified the various areas of our template, we need to tell Grid where we
want each area to appear and how much space each area should occupy. We can do this
using the grid-template-areas property of the grid-container .

#grid-container {
 display: grid;
 grid-template-areas: /* NEW */
 'header header' /* NEW */
 'menu main' /* NEW */
 'footer footer'; /* NEW */
}

If we refresh the page now, we should see that our layout is starting to take shape. By
default, the areas of our grid will assume the size of the content within them. The header

and footer look fine, but the text in main-content is occupying most of the
horizontal space on the page. To prevent this from happening, we will need to specify how
much space we want each of the columns to occupy.

The left column containing our menu should occupy 30% of the horizontal space. The right
column containing the main content of our page should occupy the remaining 70% of the
page. We can specify this using the grid-template-columns property or the
grid-container .

grid-template-columns uses fractional units (fr) to determine the size of template
areas within our layout. This allows us to specify how big we would like the areas to be in

relation to each other, without using hard-coded pixel values. Our left column will occupy 3fr,
while the right column will occupy 7fr. This will result in a 30/70 division of the page.

#grid-container {
 display: grid;
 grid-template-areas:
 'header header'
 'menu main'
 'footer footer';
 grid-template-columns: 3fr 7fr; /* NEW */
}

Note: You can use grid-template-rows to control the size of rows in the same
way.

Now that we have specified how wide we would like our columns to be the page should
display as we want it to. The text in the main content section no longer stretches out to fill
most of the screen.

We created a relatively simple layout using CSS Grid Layout in this lesson. The exact same
principles apply when creating more complex layouts, we would just need to specify more
grid-template-areas . Drawing the design out on paper and dividing it up into

columns and rows can help us to reason about more complex designs.

It's worth noting that we can next Flexbox or CSS Grid Layout containers within the areas of
our grid. We are using Flexbox to style our nav menu, for example.

MDN - CSS Grid Layout
LogRocket - The Noob's Guide to CSS Grid

Conclusion

Additional Resources

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout
https://blog.logrocket.com/the-simpletons-guide-to-css-grid-1767565b3cf7/

